If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-30k+27=0
a = 3; b = -30; c = +27;
Δ = b2-4ac
Δ = -302-4·3·27
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-24}{2*3}=\frac{6}{6} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+24}{2*3}=\frac{54}{6} =9 $
| 320=10x | | r^2+12r+36=49 | | x/(.4-x)=7.3 | | 64=y^2-4y+4 | | 4x+5x+15=180 | | 2x+17=7x+18 | | 2*k-9=-2 | | 9y=70 | | 4x+30/2=5 | | y^2-4y+4=64 | | 6^(3x+2)=225 | | 8y-3=6y+7= | | 120x-x^2=2700 | | 0x-31=141 | | 6x+22=4x+72 | | 3x-(2-4x)=x-(7+3x) | | x*0.85=119 | | 12^2x=3.36^x | | F(x)=+√x²-6+27 | | 6r+3=5 | | 5b+45=100 | | 4w+9=-19 | | -11w+35=68 | | 4b+50=94 | | 2g+10=4g+2 | | -9k+48=93 | | 2w+26=50 | | 10z+13=-97 | | 24.6+3a/4=17 | | 12a+35=11 | | 6c+34=88 | | 4–4p=–48 |